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ABSTRACT 

Event-based cameras, as bio-inspired vision sensors, record intensity changes asynchronously. The Dynamic and Active-pixel 

Vision Sensor (DAVIS) enhances information diversity by combining a standard camera with an event-based camera. 

However, current methods analyze event streams synchronously, contradicting their nature and introducing noise. To address 

this, most approaches accumulate events within a time interval to create synchronous frames, wasting sensitive intensity 

changes. This paper introduces a novel neural asynchronous approach for event stream analysis. Our method asynchronously 

extracts dynamic information by leveraging historical motion information and critical features of grayscale frames. Extensive 

experiments demonstrate our model’s significant improvements over state-of-the-art baselines. 
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I. INTRODUCTION 
 

Event-based cameras, such as the Dynamic and Active-pixel Vision Sensor (DAVIS)[1,2,3,4,5], are novel bio- 

inspired vision sensors that record asynchronous events when pixel intensity changes. Unlike traditional cameras capturing 

grayscale frames at fixed intervals, event-based cameras produce a sequential event stream. The event stream is represented as a 

sequence of quads (x, y, t, p), where x and y indicate pixel position, t is the timestamp, and indicates brightness changes. 

Event-based cameras offer advantages such as low-latency , high dynamic range, low band- width (¿120dB), high 

temporal resolution, low storage capacity, and low processing time and power consumption. DAVIS combines these benefits 

with those of traditional cameras. 
 

 
 

Visualization of the event stream generated from DAVIS 
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Figure 1: DAVIS camera combines a standard camera and an event-based camera. It provides grayscale frames 

(images) and the event stream occurring between these frames. Image slices indicate grayscale images recorded at fixed rates, 

while blue dots indicate events recorded by the event-based camera, showing brightness changes for corresponding pixels 

between images. This provides advantages such as low latency, high dynamic range, and high temporal resolution, effectively 

promoting computer vision tasks. 
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Figure 2: Visualization of Different Frames. There are two independent cases: the top and bottom lines. APS (i.e., (a), 

(e)) are the original grayscale images provided [10,11,12,13,14,15,16]by the standard camera of DAVIS. Event frame (50ms) 

(i.e., (b), (f)) are the accumulated events within 50ms. h
+
 h

−
 (i.e., (c), (g)) collects more information from the accumulated 

events. Our mask (i.e., (d), (h)) is the attention mask of our model in the form of a heat map. 

DAVIS includes both an event-based and a standard camera, producing asynchronous event streams and synchronous grayscale 

frames. Asynchronous events occur randomly, unlike synchronous objects with fixed intervals. Event-based cameras 

outperform standard ones in tasks like motion estimation, fea ture extraction, and object tracking. Existing models accumulate 

events over time to create synchronous frames [Gehrig et al., 2018], losing potential dynamic information. Recent studies 

attempt to split these frames into parts for brightness and darkness events. Our novel neural architecture addresses these issues 

by analyzing event streams [20,22,23,24,25,26,27] asynchronously. 

 

II. RELATED WORK 

 

Event-based cameras have shown significant improvements over standard cameras in computer vision tasks [Vasco et 

al., 2016]. However, analyzing the event stream remains challenging. Traditional models accumulate events over time to create 

synchronous frames, losing dynamic information. Researchers have attempted to split these frames into parts for positive and 

negative events, improving optical flow estimation. Despite their efficiency, these methods introduce noise and increase 

latency, wasting the low-latency property of [Kueng et al., 2016]event-based cameras. Recent asynchronous approaches 

combine events and grayscale images for feature tracking, outperforming synchronous models. Our work builds on these 

advances by presenting the first deep learning-driven framework for asynchronous event stream analysis [Mueggler et al., 

2015], leveraging channel-wise and spatial-wise attention mechanisms. 

 

III. METHOD 
 

3.1 Representation of Event Cameras and Event Stream 

Event-based cameras track intensity changes in each pixel, recording events when log intensity changes exceed a 

predefined [Kim and Canny, 2017] threshold C: 

where It is the intensity at timestamp t. Each event includes four elements: x, y pixel location, timestamp t, and polarity p: 

Due to the asynchronous nature of events, extracting dynamic events for APS feature extraction is challenging. 
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3.2 Neural Architecture 

 

Figure 3: Proposed Neural Architecture. First, grayscale images G are encoded into image-specific feature tensor 

I. The event matrix M is constructed under the same timestamp and compressed into timestamp-specific vector T by the 

event feature extraction module. Second, GRU processes timestamp-specific vectors T in sequence to achieve hidden 

representation h for each timestamp [Lagorce et al., 2017]. Third, channel-wise and spatial-wise attention mechanism 

transforms image- specific tensor I into image-specific feature tensor FT . Fourth, the flattened image-specific feature tensor F 

and timestamp-specific vector TZ are concatenated as the input of the feature layer. The feature layer produces a mask S to 

cover the original grayscale image G as masked image Y . Finally, ResNet maps the masked image Y into the steering angle 

D. 

 

 

Figure 4: The inputs of this module are the event matrix M and the latest q angles a = (a1,   aq). The output is 

timestamp-specific vector T . The event matrix M is projected with a linear layer, processed with the latest angle vector a, and 

projected again with another linear layer. An attention vector is generated and column-wisely multiplied with the output to 

achieve timestamp-specific vector T . 

The neural architecture comprises five stages: 

1. Grayscale images G are encoded into image-specific feature tensor I by the APS feature extraction encoder. The event 

matrix M is constructed and compressed into timestamp-specific vector T . 

2. GRU processes timestamp-specific vectors T in sequence to achieve hidden representation h. 

3. Channel-wise and spatial-wise attention mechanism transforms image-specific tensor I into image- specific feature 

tensor FT, which is then flattened into vector F. 

4. The flattened image-specific feature tensor F and timestamp-specific vector TZ are concatenated as the input of the 

feature layer. The feature layer produces a mask S to cover the original grayscale image G. 

5. ResNet maps the masked image Y into the steering angle D. 

3.2.1 APS Feature Extraction Encoder 

The APS feature extraction encoder extracts hidden features from grayscale images. The input is a grayscale image I, 

and the output is an image-specific feature tensor I. 
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3.2.2 Event Matrix Construction 

The event matrix construction module constructs the event matrix M from the event set under the same timestamp. The 

event matrix M has the same size as the original grayscale image I. Events are recorded in the matrix, with unrecorded entries 

filled with 0. 

3.2.3 Event Feature Extraction Module 

The event feature extraction module processes the event matrix M and the latest q angles composed vector a. The 

output is timestamp-specific vector T. The module encodes the event stream asynchronously, using a series of linear layers and 

attention mechanisms. 

 

IV. EXPERIMENTS 

 

4.1 Performance Metrics 

We use the root-mean-squared error (RMSE) to measure performance: 

 
where αˆ  are predicted values and α  are observed values.   Explained variance (EVA) evaluates model stability: 

where β is the RMSE of the baseline and βˆ is the RMSE of our methods. 

 

4.2 Datasets 

We use the public benchmark dataset [Binas et al., 2017], which contains over 12 hours of driving records collected by 

vehicles under real and challenging scenarios. The dataset includes asynchronous events, grayscale images (APS), and other 

sensor data such as vehicle speed, GPS position [Nguyen et al., 2017], driver steering, and throttle. The dataset is segmented 

into four subsets: day, day sun, evening, and night, according to weather and scenarios. Most steering angles are slight 

deviations of ±10 degrees, and speeds are uniformly distributed over 0-160 km/h. [70,71,72] 

 

 
 

Table 2: Comparison with synchronous learning approaches using grayscale (APS) frames and event frames for each 

scenario. The APS baseline is based on the ResNet18 network. 

 

4.3 Implementation 

We split the data into four parts [40,51,53,54,55,56]according to scenarios: day, day sun, evening, and night. We use 

the same dataset segmentation, pre-processing, and tricks as state-of-the-art baselines for fair comparison. Grayscale images 

are processed and encoded into tensors. The event matrix M is constructed identically to grayscale images. The event feature 

extraction module uses parameter matri- ces and attention vectors to produce a timestamp-specific vector. We flatten the feature 

tensor FT and concatenate it with the timestamp-specific vector TZ, producing an image mask. 

Our optimal settings include w = 260, h = 346, q = 256, Z = 10 in 10fps dataset or Z = 50 in 50fps. The 

model is trained using ADAM with hyper-parameters β1 = 0.9, β2 = 0.999, ϵ = 10
−8

, and an initial learning rate of 0.0001. 
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4.4 Results & Analysis 

Experimental results in Table 2 address two critical questions: 

1. How does our asynchronous approach outperform traditional synchronous approaches for event streams? 2. Why can 

our asynchronous approach extract dynamic information better? 

For fair comparison, we use the same ResNet18 [23,51,60,62,63,64,65,66,67,68]or ResNet50 networks as feature 

encoders. Our model outperforms those using only grayscale images, with approximately 33.34 

In the night dataset, ResNet50-based models slightly outperform ours, but our ResNet18-based model still shows significant 

improvements over corresponding baselines. Future work will explore using more effective CNN networks like ResNet101 or 

inception for further performance gains. 

 

Results Methods 

Metric 

Maqueda 

(ResNet18) 

Ours 

(Full) 

w/o 

C-S attention 

w/o APS 

Branch 

 

LSTM 

RMSE 5.65 5.07 5.23 5.41 5.15 

EVA 0.512 0.673 0.642 0.614 0.652 

 

Table 3: Ablation study on the effects of key components of our methods. RMSE & EVA are shown with a held out 

test set on each component with fixed random seed. 

(c) 

Evening 

(d) Dark Night 

Figure 4: Gray-scale images extracted from the dataset [Binas et al., 2017] for the four scenarios. 

 

In conclusion, our asynchronous approach better extracts dynamic information by filtering out distracting objects. 

Visualization of different frames shows that event-based cameras capture dynamic points more effectively than grayscale images, 

especially under high velocities [Amir et al., 2017]. Our attention masks focus on critical features like cars, houses, and route 

lines, ignoring background noise like trees and clouds [Fu et al., 2017]. 

 

4.5 Ablation Study 

We conducted an ablation study to analyze the contributions of each module using a segmented dataset of DDD17. 

Table 3 shows RMSE & EVA results for a model without C-S attention, without the APS branch, and using LSTM instead of 

GRU. Results demonstrate that C-S attention, the APS branch, and GRU are necessary components, and naive event 

asynchronous models also outperform traditional methods. 

 

V. CONCLUSION 

 

This paper proposes an attention-based asynchronous approach for self-driving tasks. Our method ana- lyzes the event 

stream asynchronously, extracting dynamic points to filter out distractions. We leverage attention mechanisms to jointly 

analyze asynchronous event streams and grayscale images, achieving substantial improvements over state-of-the-art 

baselines. Experiments demonstrate the effectiveness of our approach. 

 



Social Science Journal for Advanced Research                                                   Peer Reviewed and Refereed Journal 

ISSN (Online): 2583-0074 

Volume-4 Issue-5 || September 2024 || PP. 10-17                                                        DOI: 10.5281/zenodo.13639724 

 

http://ssjar.singhpublication.com      15 | P a g e  

REFERENCES 
 

1. Liu, Xiaoyi, & Zhuoyue Wang. (2024). Deep learning in medical image classification from mri based brain tumor 

images. arXiv preprint arXiv:2408.00636. 

2. Chen, M. (2021, December). Annual precipitation forecast of Guangzhou based on genetic algorithm and 

backpropagation neural network (GA-BP). in International Conference on Algorithms, High Performance Computing, 

and Artificial Intelligence (AHPCAI 2021), 12156, pp. 182-186). SPIE. 

3. Gu, Wenjun, et al. (2024). Predicting stock prices with FinBERT-LSTM: Integrating news sentiment analysis. arXiv 

preprint arXiv:2407.16150. 

4. Yan, H., Wang, Z., Xu, Z., Wang, Z., Wu, Z., & Lyu, R. (2024). Research on image super-resolution reconstruction 

mechanism based on convolutional neural network. arXiv preprint arXiv:2407.13211. 

5. Wang, Randi, & Vadim Shapiro. (2019). Topological semantics for lumped parameter systems modeling. Advanced 

Engineering Informatics, 42, 100958. 

6. Wang, Randi, Vadim Shapiro, & Morad Mehandish. (2024). Model consistency for mechanical design: Bridging 

lumped and distributed parameter models with a priori guarantees. Journal of Mechanical Design, 146(5). 

7. Qiu, Ri-Zhao, et al. (2022). Real-time semantic 3D reconstruction for high-touch surface recognition for robotic 

disinfection. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. 

8. Wu, X., Wu, Y., Li, X., Ye, Z., Gu, X., Wu, Z., & Yang, Y. (2024). Application of adaptive machine learning systems 

in heterogeneous data environments. Global Academic Frontiers, 2(3), 37-50. 

9. Chen, M., Chen, Y., & Zhang, Q. (2021). A review of energy consumption in the acquisition of bio-feedstock for 

microalgae biofuel production. Sustainability, 13(16), 8873. 

10. Qiu, Ri-Zhao, et al. (2024). Feature splatting: Language-driven physics-based scene synthesis and editing. arXiv 

preprint arXiv:2404.01223. 

11. Wang, Z., Yan, H., Wang, Y., Xu, Z., Wang, Z., & Wu, Z. (2024). Research on autonomous robots navigation based 

on reinforcement learning. arXiv preprint arXiv:2407.02539. 

12. Jiang, L., Yu, C., Wu, Z., & Wang, Y. (2024). Advanced AI framework for enhanced detection and assessment of 

abdominal trauma: Integrating 3D segmentation with 2D CNN and RNN models. arXiv preprint arXiv:2407.16165. 

13. Yao, Jiawei, & Jusheng Zhang. (2023). Depthssc: Depth-spatial alignment and dynamic voxel resolution for 

monocular 3d semantic scene completion. arXiv preprint arXiv:2311.17084. 

14. Yao, Jiawei, et al. (2024). Building lane-level maps from aerial images. ICASSP 2024-2024 IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 

15. Zhang, X., Soe, A. N., Dong, S., Chen, M., Wu, M., & Htwe, T. (2024). Urban resilience through green roofing: A 

literature review on dual environmental benefits. in E3S Web of Conferences, 536, pp. 01023. EDP Sciences. 

16. Ma, B., Ma, B., Gao, M., Wang, Z., Ban, X., Huang, H., & Wu, W. (2021). Deep learning‐based automatic inpainting 

for material microscopic images. Journal of Microscopy, 281(3), 177-189. 

17. Dong, S., Xu, T., & Chen, M. (2022, October). Solar radiation characteristics in Shanghai. Journal of Physics: 

Conference Series, 2351(1), 012016). IOP Publishing. 

18. Chen, M., Chen, Y., & Zhang, Q. (2024). Assessing global carbon sequestration and bioenergy potential from 

microalgae cultivation on marginal lands leveraging machine learning. Science of The Total Environment, 948, 

174462. 

19. Wang, Y., Ban, X., Wang, H., Li, X., Wang, Z., Wu, D., ... & Liu, S. (2019). Particle filter vehicles tracking by fusing 

multiple features. IEEE Access, 7, 133694-133706. 

20. Zhu, Z., Wang, Z., Wu, Z., Zhang, Y., & Bo, S. (2024). Adversarial for sequential recommendation walking in the 

multi-latent space. Applied Science and Biotechnology Journal for Advanced Research, 3(4), 1-9. 

21. Chen, M. (2023). Investigating the influence of interannual precipitation variability on terrestrial ecosystem 

productivity. Doctoral Dissertation, Massachusetts Institute of Technology. 

22. Lu, Q., Guo, X., Yang, H., Wu, Z., & Mao, C. (2024). Research on adaptive algorithm recommendation system based 

on parallel data mining platform. Advances in Computer, Signals and Systems, 8(5), 23-33. 

23. Wang, Randi, & Morad Behandish. (2022). Surrogate modeling for physical systems with preserved properties and 

adjustable tradeoffs. arXiv preprint arXiv:2202.01139. 

24. Wang, Zixiang, et al. (2024). Research on autonomous robots navigation based on reinforcement learning. arXiv 

preprint arXiv:2407.02539. 

25. Yan, Hao, et al. (2024). Research on image super-resolution reconstruction mechanism based on convolutional neural 

network. arXiv preprint arXiv:2407.13211. 

26. Liu, Jiabei, et al. (2024). Application of deep learning-based natural language processing in multilingual sentiment 



Social Science Journal for Advanced Research                                                   Peer Reviewed and Refereed Journal 

ISSN (Online): 2583-0074 

Volume-4 Issue-5 || September 2024 || PP. 10-17                                                        DOI: 10.5281/zenodo.13639724 

 

http://ssjar.singhpublication.com      16 | P a g e  

analysis. Mediterranean Journal of Basic and Applied Sciences (MJBAS), 8(2), 243-260. 

27. Xu, Qiming, et al. (2024). Applications of explainable AI in natural language processing. Global Academic Frontiers, 

2(3), 51-64. 

28. Zhong, Yihao, et al. (2024). Deep learning solutions for pneumonia detection: Performance comparison of custom and 

transfer learning models. medRxiv. 

29. Tao Y. (2023). Meta learning enabled adversarial defense. IEEE International Conference on Sensors, Electronics and 

Computer Engineering (ICSECE), pp. 1326-1330. IEEE. 

30. Zhu, Armando, et al. (2024). Exploiting diffusion prior for out-of-distribution detection. arXiv preprint 

arXiv:2406.11105. 

31. Li, Keqin, et al. (2024). Exploring the impact of quantum computing on machine learning performance. 

32. Gu, Wenjun, et al. (2024). Predicting stock prices with FinBERT-LSTM: Integrating news sentiment analysis. arXiv 

preprint arXiv:2407.16150. 

33. Wang, Zixiang, et al. (2024). Research on autonomous driving decision-making strategies based deep reinforcement 

learning. arXiv preprint arXiv:2408.03084. 

34. Bo, Shi, et al. (2024). Attention mechanism and context modeling system for text mining machine translation. arXiv 

preprint arXiv:2408.04216. 

35. Shimizu, Shosei et al. (2023). Boron neutron capture therapy for recurrent glioblastoma multiforme: Imaging 

evaluation of a case with long-term local control and survival. Cureus, 15(1), e33898. doi:10.7759/cureus.33898. 

36. Bo, Shi, & Minheng Xiao. (2022). Dynamic risk measurement by EVT based on stochastic volatility models via 

MCMC. arXiv preprint arXiv:2201.09434. 

37. Tao Y. (2023). SQBA: Sequential query-based blackbox attack. 5
th

 International Conference on Artificial Intelligence 

and Computer Science (AICS 2023), 721-729. 

38. Qian, Yang, et al. (2020). Heterogeneous optoelectronic characteristics of Si micropillar arrays fabricated by metal-

assisted chemical etching. Scientific Reports, 10(1), 16349. 

39. Li, Wei, et al. (2018). An intelligent electronic lock for remote-control system based on the internet of things. Journal 

of Physics: Conference Series, 1069(1). IOP Publishing. 

40. Han, Yi, & Thomas CM Lee. (2022). Uncertainty quantification for sparse estimation of spectral lines. IEEE 

Transactions on Signal Processing 70, 6243-6256. 

41. Han, Yi, & Thomas CM Lee. (2024). Structural break detection in non-stationary network vector autoregression 

models. IEEE Transactions on Network Science and Engineering. 

42. Tan, Chaoyi, et al. (2024). Editable neural radiance fields convert 2D to 3D furniture texture. International Journal of 

Engineering and Management Research, 14(3), 62-65. 

43. Xiao, Minheng, Shi Bo, & Zhizhong Wu. (2024). Multiple greedy quasi-newton methods for saddle point problems. 

arXiv preprint arXiv:2408.00241. 

44. Niitsu, Hikaru et al. (2024). Tumor response on diagnostic imaging after proton beam therapy for hepatocellular 

carcinoma. Cancers, 16(2), 357. doi:10.3390/cancers16020357. 

45. Pan, Xiaochao, et al. (2024). HarmonicNeRF: Geometry-informed synthetic view augmentation for 3D scene 

reconstruction in driving scenarios. ACM Multimedia. 

46. Li, Zhenglin, et al. (2023). Stock market analysis and prediction using LSTM: A case study on technology 

stocks. Innovations in Applied Engineering and Technology, 1-6.  

47. Mo, Yuhong, et al. (2024). Large Language Model (LLM) AI text generation detection based on transformer deep 

learning algorithm. International Journal of Engineering and Management Research, 14(2), 154-159.  

48. Li, Shaojie, Yuhong Mo, & Zhenglin Li. (20220. Automated pneumonia detection in chest x-ray images using deep 

learning model. Innovations in Applied Engineering and Technology, 1-6. 

49. Mo, Yuhong, et al. (2024). Password complexity prediction based on roberta algorithm. Applied Science and 

Engineering Journal for Advanced Research, 3(3), 1-5. 

50. Song, Jintong, et al. (2024). A comprehensive evaluation and comparison of enhanced learning methods. Academic 

Journal of Science and Technology, 10(3), 167-171. 

51. Liu, Tianrui, et al. (2024). Spam detection and classification based on distilbert deep learning algorithm. Applied 

Science and Engineering Journal for Advanced Research, 3(3), 6-10.  

52. Dai, Shuying, et al. (2024). The cloud-based design of unmanned constant temperature food delivery trolley in the 

context of artificial intelligence. Journal of Computer Technology and Applied Mathematics, 1(1), 6-12. 

53. Mo, Yuhong, et al. (2024). Make scale invariant feature transform “Fly” with CUDA. International Journal of 

Engineering and Management Research, 14(3), 38-45. 

54. He, Shuyao, et al. (2024). Lidar and monocular sensor fusion depth estimation. Applied Science and Engineering 

Journal for Advanced Research, 3(3), 20-26. 



Social Science Journal for Advanced Research                                                   Peer Reviewed and Refereed Journal 

ISSN (Online): 2583-0074 

Volume-4 Issue-5 || September 2024 || PP. 10-17                                                        DOI: 10.5281/zenodo.13639724 

 

http://ssjar.singhpublication.com      17 | P a g e  

55. Liu, Jihang, et al. (2024). Unraveling large language models: From evolution to ethical implications-introduction to 

large language models. World Scientific Research Journal, 10(5), 97-102. 

56. Mo Yuhong, Zhang Yuchen, Li Hanzhe, Wang Han, & Yan Xu. (2024). Prediction of heart failure patients based on 

multiple machine learning algorithms. Applied and Computational Engineering, 75, 1-7. doi:10.54254/2755-

2721/75/20240498.  

57. Yan, H., Wang, Z., Bo, S., Zhao, Y., Zhang, Y., & Lyu, R. (2024). Research on image generation optimization based 

deep learning. 

58. Tang, X., Wang, Z., Cai, X., Su, H., & Wei, C. (2024). Research on heterogeneous computation resource allocation 

based on data-driven method. arXiv preprint arXiv:2408.05671. 

59. Wang, X. (2020). Nonlinear energy harvesting with tools from machine learning. Doctoral Dissertation, Duke 

University. 

60. Qi, Z., Ma, D., Xu, J., Xiang, A., & Qu, H. (2024). Improved YOLOv5 based on attention mechanism and FasterNet 

for foreign object detection on railway and airway tracks. arXiv preprint arXiv:2403.08499. 

61. Xiang, A., Huang, B., Guo, X., Yang, H., & Zheng, T. (2024). A neural matrix decomposition recommender system 

model based on the multimodal large language model. arXiv preprint arXiv:2407.08942. 

62. Ma, D., Wang, M., Xiang, A., Qi, Z., & Yang, Q. (2024). Transformer-based classification outcome prediction for 

multimodal stroke treatment. arXiv preprint arXiv:2404.12634. 

63. Xiang, A., Qi, Z., Wang, H., Yang, Q., & Ma, D. (2024). A multimodal fusion network for student emotion recognition 

based on transformer and tensor product. arXiv preprint arXiv:2403.08511. 

64. Ma, D., Yang, Y., Tian, Q., Dang, B., Qi, Z., & Xiang, A. Comparative analysis of X-ray image classification of 

pneumonia based on deep learning algorithm algorithm. 

65. Tan, C., Wang, C., Lin, Z., He, S., & Li, C. (2024). Editable neural radiance fields convert 2D to 3D furniture texture. 

International Journal of Engineering and Management Research, 14(3), 62-65 

66. Wang, X. S., Turner, J. D., & Mann, B. P. (2021). Constrained attractor selection using deep reinforcement learning. 

Journal of Vibration and Control, 27(5-6), 502-514. 

67. Kai Feng, Jingheng Wang, Xiaoyuan Wang, Gang Wang, Quanzheng Wang, & Junyan Han. (2024). Adaptive state 

estimation and filtering for dynamic positioning ships under time-varying environmental disturbances. Ocean 

Engineering. 

68. Gang Wang, Jingheng Wang, Xiaoyuan Wang, Quanzheng Wang, Longfei Chen, Junyan Han, Bin Wang, & Kai Feng. 

(2024). Local path planning method for unmanned ship based on encounter situation inference and COLREGS 

constraints. Journal of Marine Science and Engineering. 

69. Gang Wang, Jingheng Wang, Xiaoyuan Wang, Quanzheng Wang, Junyan Han, Longfei Chen, & Kai Feng. (2024). A 

method for coastal global route planning of unmanned ships based on human-like thinking. Journal of Marine Science 

and Engineering. 

70. Bin Wang, Jingheng Wang, Xiaoyuan Wang, Longfei Chen, Han Zhang, Chenyang Jiao, Gang Wang, & Kai Feng. 

(2024). An identification method for road hypnosis based on human EEG data. Sensors (Basel).  

71. Quanzheng Wang, Jingheng Wang, Xiaoyuan Wang, Luyao Wu, Kai Feng, & Gang Wang. (2024). A YOLOv7-based 

method for ship detection in videos of drones. Journal of Marine Science and Engineering. 

72. Longfei Chen ,Jingheng Wang, Xiaoyuan Wang, Bin Wang, Han Zhang, Kai Feng, Gang Wang, Junyan Han, & Huili 

Shi. (2024). A road hypnosis identification method for drivers based on fusion of biological characteristics. Digital 

Transportation and Safety. 


